Elucidating pharmacodynamic interaction of silver nanoparticle - topical deliverable antibiotics
نویسندگان
چکیده
In order to exploit the potential benefits of antimicrobial combination therapy, we need a better understanding of the circumstances under which pharmacodynamic interactions expected. In this study, Pharmacodynamic interactions between silver nanoparticle (SNP) and topical antibiotics such as Cefazolin (CEF), Mupirocin (MUP), Gentamycin (GEN), Neomycin (NEO), Tetracycline (TET), Vancomycin (VAN) were investigated using the MIC test, Combination assay followed by Fractional Inhibitory concentration Index and Agar well diffusion method. SNP + MUP, SNP + NEO, SNP + VAN combinations showed Synergism (SN) and SNP + CEF, SNP + GEN, SNP + TET showed Partial synergism (PS) against Staphylococcus aureus. Four combinations (SNP + CEF, SNP + MUP, SNP + GEN, SNP + VAN) showed SN, SNP + TET showed PS and Indifferent effect (ID) were observed for SNP + NEO against Pseudomonas aeruginosa. SN was observed for SNP + CEF, SNP + GEN, SNP + NEO, SNP + TET and SNP + MUP showed ID, SNP + VAN showed PS against Escherichia coli. In addition, we elucidated the possible mechanism involved in the pharmacodynamic interaction between SNP-topical antibiotics by increased ROS level, membrane damage following protein release, K(+) leakage and biofilm inhibition. Thus, our findings support that conjugation of the SNP with topical antibiotics have great potential in the topical formulation when treating complex resistant bacterial infections and where there is a need of more concentration to kill pathogenic bacteria.
منابع مشابه
Silver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival.
Silver nanoparticles exhibit antibacterial properties via bacterial inactivation and growth inhibition. The mechanism is not yet completely understood. This work was aimed at elucidating the effect of silver nanoparticles on inactivation of Escherichia coli, by studying particle-particle interactions in aqueous suspensions. Stable, molecularly capped, positively or negatively charged silver nan...
متن کاملBiochemical profiling of microbes inhibiting Silver nanoparticles using symbiotic organisms
Silver nanoparticle therapeutics using symbiotic organisms can offer solutions to the current obstacles in antimicrobial therapies, because of cost-effective and eco-friendly properties over chemical and physical methods. In this study, we aim to synthesize silver nanoparticles using lichen (Parmotrema tinctorum) extract and evaluation of its antibacterial properties. Synthesized silve...
متن کاملBiochemical profiling of microbes inhibiting Silver nanoparticles using symbiotic organisms
Silver nanoparticle therapeutics using symbiotic organisms can offer solutions to the current obstacles in antimicrobial therapies, because of cost-effective and eco-friendly properties over chemical and physical methods. In this study, we aim to synthesize silver nanoparticles using lichen (Parmotrema tinctorum) extract and evaluation of its antibacterial properties. Synthesized silve...
متن کاملBrassica oleraceae, a versatile plant for green synthesis of silver nanoparticles
In the present paper, silver nanoparticles (AgNPs) were synthesized using the Brassica oleraceae fruit extract under the simple and eco-friendly conditions. The reaction between silver nitrate, as metal source, and aqueous extract of Brassica oleraceae fruit, as reductant agent, produced AgNPs in high yield. The formation of AgNPs was confirmed by means of UV-Vis spectroscopy and scanning elect...
متن کاملMechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications
Nanosilver, due to its small particle size and enormous specific surface area, facilitates more rapid dissolution of ions than the equivalent bulk material; potentially leading to increased toxicity of nanosilver. This, coupled with their capacity to adsorb biomolecules and interact with biological receptors can mean that nanoparticles can reach sub-cellular locations leading to potentially hig...
متن کامل